Core transcriptional regulatory circuitry in human hepatocytes

نویسندگان

  • Duncan T Odom
  • Robin D Dowell
  • Elizabeth S Jacobsen
  • Lena Nekludova
  • P Alexander Rolfe
  • Timothy W Danford
  • David K Gifford
  • Ernest Fraenkel
  • Graeme I Bell
  • Richard A Young
چکیده

We mapped the transcriptional regulatory circuitry for six master regulators in human hepatocytes using chromatin immunoprecipitation and high-resolution promoter microarrays. The results show that these regulators form a highly interconnected core circuitry, and reveal the local regulatory network motifs created by regulator-gene interactions. Autoregulation was a prominent theme among these regulators. We found that hepatocyte master regulators tend to bind promoter regions combinatorially and that the number of transcription factors bound to a promoter corresponds with observed gene expression. Our studies reveal portions of the core circuitry of human hepatocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models of human core transcriptional regulatory circuitries.

A small set of core transcription factors (TFs) dominates control of the gene expression program in embryonic stem cells and other well-studied cellular models. These core TFs collectively regulate their own gene expression, thus forming an interconnected auto-regulatory loop that can be considered the core transcriptional regulatory circuitry (CRC) for that cell type. There is limited knowledg...

متن کامل

Computational Analysis of Transcriptional Circuitries in Human Embryonic Stem Cells Reveals Multiple and Independent Networks

It has been known that three core transcription factors (TFs), NANOG, OCT4, and SOX2, collaborate to form a transcriptional circuitry to regulate pluripotency and self-renewal of human embryonic stem (ES) cells. Similarly, MYC also plays an important role in regulating pluripotency and self-renewal of human ES cells. However, the precise mechanism by which the transcriptional regulatory network...

متن کامل

FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOX...

متن کامل

dbCoRC: a database of core transcriptional regulatory circuitries modeled by H3K27ac ChIP-seq signals

Core transcription regulatory circuitry (CRC) is comprised of a small group of self-regulated transcription factors (TFs) and their interconnected regulatory loops. Studies from embryonic stem cells and other cellular models have revealed the elementary roles of CRCs in transcriptional control of cell identity and cellular fate. Systematic identification and subsequent archiving of CRCs across ...

متن کامل

Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells

The transcription factors OCT4, SOX2, and NANOG have essential roles in early development and are required for the propagation of undifferentiated embryonic stem (ES) cells in culture. To gain insights into transcriptional regulation of human ES cells, we have identified OCT4, SOX2, and NANOG target genes using genome-scale location analysis. We found, surprisingly, that OCT4, SOX2, and NANOG c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Systems Biology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2006